Similarity transformations for Nonlinear Schrödinger Equations with time varying coefficients : Exact results

نویسندگان

  • Pedro J. Torres
  • Vladimir V. Konotop
چکیده

In this paper we use a similarity transformation connecting some families of Nonlinear Schrödinger equations with time-varying coefficients with the autonomous cubic nonlinear Schrödinger equation. This transformation allows one to apply all known results for that equation to the original non-autonomous case with the additional dynamics introduced by the transformation itself. In particular, using stationary solutions of the autonomous nonlinear Schrödinger equation we can construct exact breathing solutions to multidimensional non-autonomous nonlinear Schrödinger equations. An application is given in which we explicitly construct time dependent coefficients leading to solutions displaying weak collapse in three-dimensional scenarios. Our results can find physical applicability in mean field models of Bose-Einstein condensates and in the field of dispersion-managed optical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

Lie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System

In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...

متن کامل

On Solutions for Linear and Nonlinear Schrödinger Equations with Variable Coefficients: A Computational Approach

In this work, after reviewing two different ways to solve Riccati systems, we are able to present an extensive list of families of integrable nonlinear Schrödinger (NLS) equations with variable coefficients. Using Riccati equations and similarity transformations, we are able to reduce them to the standard NLS models. Consequently, we can construct bright-, darkand Peregrine-type soliton solutio...

متن کامل

Equivalence transformations and differential invariants of a generalized nonlinear Schrödinger equation

By using the Lie’s invariance infinitesimal criterion we obtain the continuous equivalence transformations of a class of nonlinear Schrödinger equations with variable coefficients. Starting from the equivalence generators we construct the differential invariants of order one. We apply these latter ones to find the most general subclass of variable coefficient nonlinear Schrödinger equations whi...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005